
Class 19, given on Feb 15, 2010, for Math 13, Winter 2010

We’ve spent a considerable amount of time discussing line integrals, and in particular,
line integrals of conservative vector fields. While much of what we learned is valid for line
integrals over curves in Rn, where n is arbitrary, some of it is specific for R2. In particular,
we saw that if a vector field F = 〈P,Q〉 is conservative, then Py = Qx, and the converse
statement holds if the vector field is defined on a simply-connected set. However, there is
no obvious generalization of this condition to a vector field F = 〈P,Q,R〉 in R3.

It is partially for this reason that we will study two operators, defined on vector fields
in R3, called the divergence and curl. However, they turn out to be important for many
other reasons, both in science and in mathematics, because they appear in mathematical
descriptions of natural phenomena.

1. The divergence

Let F = 〈P,Q,R〉 be a vector field in R3. Then the divergence of F, written div F or
∇ · F, is defined to be the scalar function on R3 given by

∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

Actually, we could have defined the divergence of a vector field F = 〈F1, . . . , Fn〉 on Rn

for any n, not just n = 3, as the sum of partial derivatives

∇ · F =
∂F1

∂x1
+
∂F2

∂x2
+ . . .+

∂Fn

∂xn
,

but we will only be concerned with the cases n = 2, 3 in this class. We sometimes say ‘del
dot F’ instead of the divergence of F, which is supposed to recall the ∇ · F notation.

You can only calculate the divergence of a vector field, not a scalar function, and the
divergence of a vector field is a scalar function. The notation ∇ · F is supposed to remind
you of the gradient of a scalar function, although the divergence is something related to,
but distinct from, the gradient.

As a matter of fact, the notation ∇ · F can be thought of as a mnemonic device for
remembering the definition of divergence. If you pretend that the symbol ∇ represents the
‘vector’

∇ = 〈 ∂
∂x
,
∂

∂y
,
∂

∂z
〉,

then the ‘dot product’ of ∇ with F = 〈P,Q,R〉 is given by

∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

Of course, ∇ really isn’t a vector, since vectors must have numbers as coordinates, but we
can use this interpretation of ∇ and ∇·F to help us remember the definition of divergence.

In practice, the divergence is usually easy to calculate:

Examples.

• Calculate the divergence of F = 〈2x + y, cos y〉. Since P = 2x + y,Q = cos y, and
Px = 2, Qy = − sin y, we have ∇ · F = 2− sin y.
• Calculate the divergence of F = 〈xez, x + y + z, 3y + z2〉. Again, P = xez, Q =
x+y+z,R = 3y+z2, so Px = ez, Qy = 1, Rz = 2z, and therefore ∇·F = ez +1+2z.
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These examples should convince you that calculating the divergence is pretty easy (cer-
tainly about the same difficulty as calculating a gradient), but why bother even calculating
the divergence of a field anyway? For example, we know that the derivative of a function
f(x) represents the rate of change of a function, while the gradient of a function f(x, y)
tells us the direction that function increases most rapidly and how rapidly it increases in
that direction. What does the divergence tell us?

Let’s suppose we have a vector field F. If we pretend that F represents the rate of flow
of a fluid, for example, the ∇ · F turns out to represent the amount of ‘accumulation’ of
that fluid at a given point. For example, if ∇·F is positive at a point, then this means that
more of the fluid is flowing out of the point than into the point, and we sometimes call such
a point a source. On the other hand, if ∇ · F is negative, this means more of the fluid is
flowing in than out, and we sometimes call such a point a sink. This is all best illustrated
by looking at a variety of examples where we can easily see whether a flow is accumulating
or not, at least intuitively.

We can formulate a more precise (but not entirely precise, at least yet) version of this
intuitive idea. Suppose we are interested in ∇ · F at a point (x, y). (The same idea works
in three dimensions.) Draw a small box D around (x, y). If we think of F as a fluid,
and measure the total amount of fluid leaving the box and subtract that from the amount
entering, we get a number, say lD. We divide this number by the area of D, and take the
limit as D becomes arbitrarily small, and this turns out to equal ∇·F(x, y). We will return
to this idea in a few weeks, after we have developed the idea of surface integrals and flux.

Examples.
• Let F = 〈1, 1〉; this is an example of a constant vector field, and can be thought

of as corresponding to the flow of a fluid which moves at a constant rate. Then
∇ · F = 0. This corresponds to the idea that divergence should measure whether a
point is a source or a sink; if the rate of flow of a fluid is constant, then the amount
of fluid leaving a point is equal to the amount going in and so we should expect
∇ · F = 0.
• Let F = 〈x, 0〉. This is a vector field which can be thought of as representing a fluid

which only flows in the x-direction. A quick calculation shows that ∇ ·F = 1. This
represents the fact that, at each point, more fluid is flowing out of the point than
into it; we can see this intuitively since if we sketch this vector field, the arrows
going into a point are slightly smaller than the arrows going out of the point.
• Let F = 〈y, 0〉. This vector field has ∇ · F = 0. Although it is non-constant, the

divergence can still zero because in a sketch of the vector field, the arrows leaving
a point are all the same length as the arrows entering the point.
• Let F = 〈−y, x〉. Recall that this vector field looks like a fluid which rotates in a

counterclockwise, circular direction. Again, a quick calculation shows that∇·F = 0,
which represents the fact that the arrows leaving a point are of the same length as
the arrows entering a point.

2. The curl

We now turn our attention away from the divergence and discuss another operator,
known as the curl. Unlike the divergence, we can only define the curl of a vector field
F = 〈P,Q,R〉 which lives in R3. Given such a vector field, the curl of F, written curl F or
∇× F, is defined to be the vector field

∇× F =
〈
∂R

∂y
− ∂Q

∂z
,−

(
∂R

∂x
− ∂P

∂z

)
,
∂Q

∂x
− ∂P

∂y

〉
.
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An alternate way of remembering this definition is to interpret the notation ∇× F in the
following way: if we think of ∇ as representing the ‘vector’

∇ = 〈 ∂
∂x
,
∂

∂y
,
∂

∂z
〉,

and we take the ‘cross product’ of∇ with F = 〈P,Q,R〉, we end up with a 3×3 ‘determinant’

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

P Q R

∣∣∣∣∣∣ .
If one expands this determinant in the usual way, taking care to interpret a ‘product’ like
∂xQ as the partial derivative Qx, one ends up with exactly the original definition of the
curl.

This is obviously much more complicated to calculate than the divergence of a vector
field, but it also turns out to represent some sort of property of a vector field which might
be interesting to understand. Suppose we’ve calculated ∇×F at some point (x, y, z). If we
place a paddle whose axis is oriented in the direction of∇×F, and pretend that F represents
the flow of a fluid, then the paddle will rotate. The magnitude of ∇×F represents the rate
of rotation of the paddle, while the direction is chosen in such a way so as to match the
‘right-hand rule’: if we curl the fingers of our right hand in the direction of rotation of a
vector field, the thumb should point in the direction of ∇× F.

Examples.

• Let F = 〈1, 1, 1〉 be a constant vector field; again this can be thought of as repre-
senting a fluid flowing at a constant rate. Then ∇× F = 0. This accords with the
idea that curl measures rotations, since nowhere do we see any rotational tendencies
in this vector field.
• Let F = 〈−y, x, 0〉. This is a three-dimensional version of the rotational vector

field we looked at earlier, with all the rotation occurring in the xy plane (or planes
parallel to this plane). First, we calculate ∇× F:

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

−y x 0

∣∣∣∣∣∣ = 〈0, 0, ∂xx− ∂y(−y)〉 = 〈0, 0, 2〉

This corresponds to the fact that this field rotates around the z-axis. ∇×F points
in the positive z direction, which accords with the fact that if we curl our fingers in
the right hand in the counterclockwise direction, the thumb points in the positive
z direction.
• Let F = 〈y, 0, 0〉. Then ∇× F is given by

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

y 0 0

∣∣∣∣∣∣ = 〈0, 0,−1〉.

Even though on the surface there looks like there is no rotation in F, if we place a
paddle with axis in the z direction, because there is more flow on the top paddle
than the bottom paddle, rotation will still occur. A bit of thought will show that
this paddle rotates in the clockwise direction, so the right-hand rule tells us that
we should expect ∇ × F to point in the negative z direction, which is what we
calculated.
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In any event, the above examples are approximations to the idea of curl as measuring
the rotational tendency of a vector field. In a few weeks, we will learn a more precise
formulation of this idea.

3. Properties of the divergence and curl

We’ve seen how to calculate the curl and divergence of a vector field, and also discussed
some basic, intuitive interpretations of them. We now want to discuss some basic properties
of the divergence and curl, some of which are generalizations of properties for vector fields
in R2 that we are familiar with.

One interesting property is that the divergence of the curl of a vector field is always equal
to 0. That is,

∇ · (∇× F) = 0,

at least when F is a C2 vector field (the components of F have continuous second-order
partial derivatives). This can be shown by a direction calculation of ∇ · (∇×F), where we
use the fact that second-order mixed partial derivatives will be equal to each other.

Another property is that the curl of a gradient is always equal to 0. That is, if f(x, y, z)
is a C2 scalar function on R3, then

∇× (∇f) = ∇×∇f = 0,

regardless of what f actually is. Again, one shows this by direct calculation, along with
the use of the fact that second-order mixed partial derivatives of f will be equal.

Recall that given a vector field F = 〈P,Q〉 in R2, a necessary condition for F to be
conservative was that Py = Qx, and that this condition was sufficient if Py = Qx and
F was defined on a simply connected set D. The condition ∇ × F = 0 is the three-
dimensional analogue of the condition Py = Qx. That is, a necessary condition for a vector
field F = 〈P,Q,R〉 on R3 to be conservative (that is, of the form ∇f), is ∇ × F = 0.
Furthermore, this condition is sufficient if F is defined on a simply-connected set D and
∇× F = 0 on D.

Example. The rotational vector field F = 〈−y, x, 0〉 is not conservative, since ∇ × F =
〈0, 0, 2〉, while the vector field F = 〈x, y, z〉 is conservative, because ∇× F = 0 and this is
true for all (x, y, z) in R3, which is simply connected.

In both these cases, we could also have shown that F was conservative/not conservative
by calculating various partial integrals, and either reconstructing a potential function or
showing that no potential function could exist by reaching a contradiction. However, for
more complicated vector fields, calculating partial integrals might be much harder than
differentiation, if not impossible.

We finally remark that the divergence of a gradient, such as

∇ · ∇f(x, y) =
∂2f

∂x2
+
∂2f

∂y2
,

is sometimes called the Laplacian of f . This is sometimes written as∇2f or ∆f . We will not
talk about the Laplacian in this class, but it is of fundamental importance in mathematics,
physics, and engineering. Its relevance in real-life stems from the fact that solutions to the
equation

∆f = λf,
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where λ is some constant, are of great importance in understanding the behavior of heat
flow and waves (both the fluid variety and vibrations of strings and membranes), among
other natural phenomena. The study of solutions to this equation, and the use of these
functions to understand more complicated functions, falls under a branch of mathematics
called Fourier analysis, and might very well be the most important mathematical invention
of the past two centuries. If you are interested in learning more, a class in partial differential
equations is a good place to start.


